

Editorial

The fresh impetus enjoyed by research in the field of radiobiology over the last few years, especially in France, is reason enough to review the state of knowledge concerning the action of ionizing radiation on living matter. Such a review is the purpose of this issue of *Clefs CEA*, in which we present a sum of sound scientific information on this topic. It shows how researchers at CEA (which has been assigned a pilot mission by the public authorities), in close collaboration with those of other research bodies and academia, are making an active contribution to achieving a fuller and deeper understanding of how radiation acts on DNA, the cell and tissues.

The basis on which this issue is organized is the timescale that characterizes the biological action of radiation and the reactions of the organism. The first part thus deals with the initial events at the DNA and cell levels, which take place in a tiny fraction of a second. The second part focuses on the response of the organism in the seconds, minutes and hours that follow. The third part looks at the events that, on a scale of years or even generations, can ensue from faults in the mechanisms that in the vast majority of cases allow damage to be repaired, or at least elimination of cells that are too badly impaired.

A last more general contribution describes how an international body like the United Nations Scientific Committee on the Effects of Atomic Radiation (UNS-CEAR), whose job it is to evaluate the health impact of ionizing radiation, has organized the integration of progress in scientific research. Though all may not yet be known in fine detail, experts are able to provide authorities with the best available scientific basis on which to draw up standards with wide safety margins to ensure the protection of workers and the general public.

The concepts used in biology are highly specific and often unfamiliar. This issue therefore includes material intended to make the reading easier, including boxes in which basic notions are explained, and a glossary. Some readers will not need them; we hope others will find them helpful.

In both its form and content this issue of *Clefs CEA* is the first of a series, each one of which will present the work and results of CEA on a strategic scientific or technological topic, and the context in which the work is conducted and the results achieved. The next issue will present a panorama of the contributions made by our organization to new energy technologies.

Anne-Marie Birac Chief Editor

The Journal *Clefs CEA* is published by *Commissariat à l'énergie atomique*Communication and Public affairs Division 31 - 33, rue de la Fédération 75752 Paris Cedex 15 (France)
Tel.: 33.1.40.56.10.00

CEA on Internet: http://www.cea.fr

Scientific Committee:

Pascal Anzieu, France Brès-Tutino, Guy Fournier, Claire Giry, Jean Hanus, Étienne Klein, Alain Leudet, Jean-Claude Levain, Henri Métivier, Serge Poulard, Paul Reuss, Michel Saint-Mleux, Alain Simon, Yves Vandenboomgaerde

Contributors to this issue:

Dr. Anne Flüry-Hérard, Dr. Jean-Michel Giraud, Christine Jimonet, Philippe Voisin, Christian de Rouffignac

Responsible Publisher

Jean-Louis Chambon

Chief Editor

Anne-Marie Birac

Assistant Editors

Martine Trocellier Bernard Bouquin

Illustrations

Florence Klotz

Secretarial Office

Marceline Pac

Subscriptions

Subscription to Clefs CEA is free.
Requests should be addressed preferably by fax to:
CEA/Direction de la communication et des affaires publiques
Abonnements Clefs CEA
31 - 33, rue de la Fédération
75752 Paris Cedex 15 (France)
Fax: 33.1.40.56.20.01 - Tel.: 33.1.40.56.11.07

ISSN 0298-6248

Commission paritaire N° 2 037 ADEP

Translated into English by A.T.T. - Clermont-Ferrand

Layout: STIPA imprimerie Montreuil - 33.1.48.18.20.20

With the exception of illustrations, all information in this issue of Clefs CEA may be freely reproduced, subject to written permission from the CEA and mention of the source.

© 2000 Commissariat à l'énergie atomique

Radiation, DNA and the Cell

FOREWORD by Ethel Moustacchi

IONIZING RADIATION AND LIVING MATTER

(different types of radiation, definitions, units, experimental means)

I. DNA LESIONS

INTRODUCTION by Christine Jimonet

RADIATION-INDUCED DAMAGE TO NUCLEIC ACIDS by Jean Cadet

BOX A: DNA molecule, heredity vector

STRUCTURAL ANALYSIS OF RADIO-INDUCED LESIONS OF DNA

by Yves Boulard and Georges Victor Fazakerley

BOX B: Replication of DNA: near-perfect fidelity RADIOLYSIS OF WATER by Bernard Hickel

PHYSICAL TOOLS FOR STUDYING RADIO-INDUCED LESIONS by Pascal Pihet

II. EARLY RESPONSES AND REPAIR PROCESSES

INTRODUCTION by Marie-Claude Gaillard

THE CARETAKERS OF THE GENOME. Repair of DNA Lesions Induced by Ultraviolet-light and Ionizing Radiation by Serge Boiteux, Juan Pablo Radicella and Sylvie Chevillard

BOX C: Chromosomes, material supports for genes

Ionizing Radiation-RESISTANT BACTERIA by Marie Libert

EFFECTS OF RADIATION ON THE CELL DIVISION CYCLE. Using Yeasts as Models by Carl Mann and Marie-Claude Marsolier

BOX D: The cell, the essential link

BOX E: The cell division cycle: under control duplication

RADIATION-INDUCED GENES by Odile Rigaud and Michael Kazmaier

BOX F: Amino acids, the chemical alphabet of proteins

CELL SUICIDE by Évelyne May and Hervé Coffigny

Effects of Ionizing Radiation. THE MEASURABLE CONSEQUENCES AT THE LEVEL OF THE CELL by Philippe Voisin

III. LATE RESPONSES

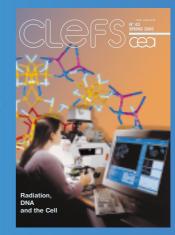
INTRODUCTION by Christine Jimonet

CHROMOSOMIC INSTABILITY by Françoise Hoffschir and Laure Sabatier

RADIO-INDUCED CANCERS. Study on Cell Cultures by Catherine Luccioni

 $RADIO\text{-}INDUCED\ GENETIC\ RISK\ ESTIMATED\ by\ Bernard\ Dutrillaux$

FROM THE CELL TO MAN


FROM RESEARCH TO REGULATIONS by Anne Flüry-Hérard

CORRESPONDENCE SCALE OF LEVELS OF EXPOSURE TO IONIZING RADIATION AND EFFECTS ON HEALTH

GLOSSARY

(words appearing in boxes and in the glossary are respectively printed in red or in blue in corresponding texts at their first occurrence)

N° 43 Spring 2000

The fundamental and technical progress of recent years in human genetics and molecular biology have made major advances possible in radiobiological research. Here: a cytoviewing apparatus processing images of genetic material obtained by fluorescence, on a background of a transverse section of a DNA.

51

43

9

10

18

23

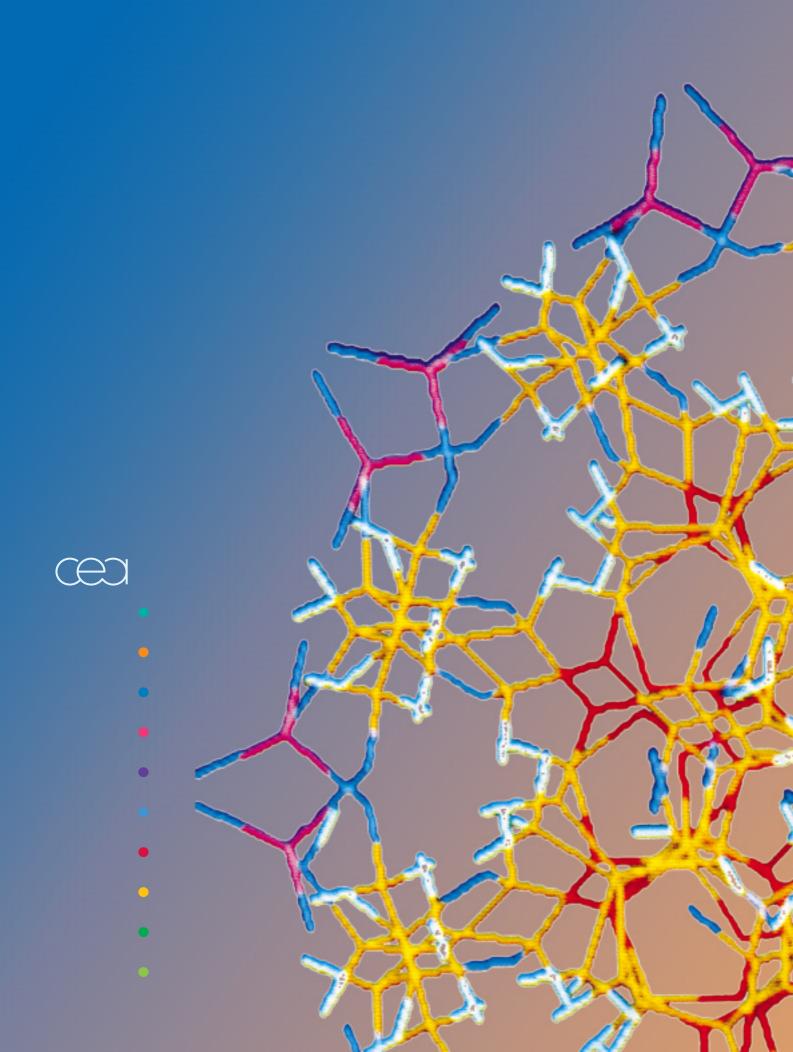
26

33

58

63

72 78 83


88

93

94

In the next issue:

NEW ENERGY
TECHNOLOGIES

